• Matéria: Matemática
  • Autor: batistafeitosam
  • Perguntado 3 anos atrás

Em uma banca são oferecidos pastéis de came, frango, palmito e queijo. Quem compra mais de 5 pastéis, ganha dois de brinde, do mesmo sabor ou de sabores diferentes. A cliente que comprar 6 pastéis, de quantas maneiras diferentes ela pode escolher os dois pastéis de brinde? Por qué?​

Respostas

respondido por: aieskagomes
2

Os dois pastéis de brinde poderão ser escolhidos de 10 maneiras diferentes.

Combinação com Repetição

Quando necessita-se fazer uma combinação onde há repetições, utiliza-se a fórmula:

\displaystyle C_{n,k}=\frac{(n+k-1)!}{k!(n-1)!}, onde:

  • n é o número total de elementos contidos no conjunto;
  • k é o total de elementos contidos no subconjunto.

Resolução do Exercício

Dados do enunciado:

  • Para compras acima de 5 pastéis há um brinde;
  • O brinde a ser recebido é o acréscimo de 2 pastéis sem custo;
  • Há 4 opções de sabores: carne, queijo, palmito e frango.

Deve-se calcular o número de possibilidades para a escolha dos dois pastéis de brinde.

É permitido:

  • Escolher dois sabores iguais;
  • Escolher dois sabores diferentes.

Sendo assim utiliza-se a fórmula da combinação com repetição, onde:

\displaystyle C_{4,2}=\frac{(4+2-1)!}{2!(4-1)!}

\displaystyle C_{4,2}=\frac{5!}{2!3!}

\displaystyle C_{4,2}=\frac{5*4*3!}{2!3!}

Cortando o 3! presente no numerador e no denominador da fração:

\displaystyle C_{4,2}=\frac{5*4}{2!}

\displaystyle C_{4,2}=\frac{20}{2*1}

\displaystyle C_{4,2}=\frac{20}{2}=10

Para melhor fixação do conteúdo você pode ver outra pergunta sobre combinação simples com repetição no link: https://brainly.com.br/tarefa/34984385

#SPJ1

Anexos:
Perguntas similares