• Matéria: Matemática
  • Autor: labeletty
  • Perguntado 9 anos atrás

Por meio de tentativas, resolva.  RESPOSTA COM CÁLCULO

1-   a)  \sqrt{529}    b)  \sqrt{3025}    c)  \sqrt[3]{1728}    d)  \sqrt[3]{10648}

Calcule cada raiz decompondo radicandos em fatores primos. RESPOSTAS COM CÁLCULO

2-  a) \sqrt{1024}   b) \sqrt{2401}   c) \sqrt{6561}   d) \sqrt[3]{5832}   e) \sqrt[3]{1968}   f) \sqrt[3]{27000}  

AS RESPOSTAS SEM CÁLCULO NÃO IRÃO ME AJUDA e.e


Jessicagabsilva21: Quais são os valores à ser calculado
labeletty: tinha colocado errado ;--;
Jessicagabsilva21: 1- a) 23 b) 55 c) 12 d) 22

Respostas

respondido por: ProfAmaral
231
1)\\ a) \sqrt{529}= \sqrt{23^2}=23\\ b) \sqrt{3025}= \sqrt{5^2\cdot11^2}= \sqrt{5^2}\cdot \sqrt{11^2}=5\cdot11=55\\ c) \sqrt{1728}= \sqrt[3]{2^6\cdot3^3}= \sqrt[3]{2^6}\cdot \sqrt[3]{3^3}=2^2\cdot3=4\cdot3=12\\ c) \sqrt{10648}= \sqrt[3]{2^3\cdot11^3}= \sqrt[3]{2^3}\cdot \sqrt[3]{11^3}=2\cdot11=22\\ 2)\\ a) \sqrt{1024}= \sqrt{2^10}=2^5=32\\ b) \sqrt{2401}= \sqrt{7^4}=7^2=49\\c) \sqrt{6561}= \sqrt{3^8}=3^4=81\\ d) \sqrt[3]{5832}= \sqrt[3]{2^3\cdot3^6}= \sqrt[3]{2^3}\cdot \sqrt[3]{3^6}=2\cdot3^2=2\cdot9=18

labeletty: Tá tudo misturado >.>
ProfAmaral: Faltou espaço pra a letra f. a letra e deve ter sido digitada errada.
respondido por: mayaravieiraj
3

Os valores das raízes são:

A) √529 = 23

B) √3025 = 55

C) ∛1728 = 12

D) ∛10.648 = 22

Faremos a resolução pela decomposição em fatores primos:

A) √529

529 / 23

 23 / 23

  1

529 = 23²

√529 = √23²

√529 = 23

B) √3025

3025 / 5

 605 / 5

  121 / 11

    11 / 11

     1

3025 = 5².11²

√3025 = √(5².11²)

√3025 = 5.11

√3025 = 55

C) ∛1728

1728 / 2

864 / 2

432 / 2

 216 / 2

 108 / 2

 54 / 2

 27 / 3

  9 / 3

  3 / 3

  1

1728 = 2³.2³.3³.

∛1728 = ∛2³.2³.3³

∛1728 = 2.2.3

∛1728 = 12

D) ∛10648

10648 / 2

 5324 / 2

 2662 / 2

  1331 / 11

   121 / 11

      11 / 11

       1

10648 = 2³.11³.

∛10648 = ∛2³.11³

∛10648 = 2.11

∛10648 = 22

Leia mais em:

https://brainly.com.br/tarefa/8724156

Anexos:
Perguntas similares