• Matéria: Matemática
  • Autor: emanoelrybu
  • Perguntado 9 anos atrás

qual derivada da função f(x) = (3x^5 -1) (2 - x^4)

Respostas

respondido por: Niiya
6
Existem dois jeitos

\bullet Expandir a expressão de f(x):

f(x)=(3x^{5}-1)(2-x^{4})\\\\f(x)=3x^{5}\cdot2-3x^{5}\cdot x^{4}-1\cdot2+1\cdot x^{4}\\\\f(x)=6x^{5}-3x^{9} - 2 + x^{4}

Derivando, temos:

f'(x)=6\frac{d}{dx}x^{5}-3\frac{d}{dx}x^{9}-0+\frac{d}{dx}x^{4}\\\\f'(x)=6\cdot5x^{4}-3\cdot9x^{8}+4x^{3}\\\\\boxed{\boxed{f'(x)=-27x^{8}+30x^{4}+4x^{3}}}
_________________

\bullet Usar a regra do produto

f(x)=(3x^{5}-1)(2-x^{4})\\\\f'(x)=\frac{d}{dx}[(3x^{5}-1)(2-x^{4})]\\\\f'(x)=(2-x^{4})\frac{d}{dx}(3x^{5}-1)+(3x^{5}-1)\frac{d}{dx}(2-x^{4})\\\\f'(x)=(2-x^{4})(3\cdot5x^{4}-0)+(3x^{5}-1)(0-4x^{3})\\\\f'(x)=15x^{4}\cdot(2-x^{4})-4x^{3}\cdot(3x^{5}-1)\\\\f'(x)=30x^{4}-15x^{8}-12x^{8}+4x^{3}\\\\\boxed{\boxed{f'(x)=-27x^{8}+30x^{4}+4x^{3}}}
Perguntas similares