• Matéria: Matemática
  • Autor: ricardozavatini
  • Perguntado 9 anos atrás

Determine o conjunto de valores reais de x que satisfazem cada uma das equações:

a) 2^x+1 + 2^x−1 = 20

b) log base2(x + 1) + log base2(x − 1) = 3

Respostas

respondido por: Anônimo
2
Boa tarde!

Solução!

2^{x+1} +2^{x-1}=20\\\\\\
2^{x}.2+2^{x}.2^{-1}=20\\\\\\
2^{x}(2+2^{-1})=20\\\\\\\
2^{x}(2+ \frac{1}{2})=20 \\\\\\\
2^{x}( \frac{4+1}{2})=20\\\\\\
2^{x}( \frac{5}{2})=20\\\\\
2^{x}= \dfrac{20}{ \dfrac{5}{2} } \\\\\\
2^{x}=20. \dfrac{2}{5}\\\\\
2^{x} =4.2\\\\\\
2^{x} =8\\\\\
2^{x}=2^{3}\\\\\\
\boxed{x=3}


log_{2}(x+1)+log_{2}(x-1)=3\\\\\\
log_{2}[(x+1)+(x-1)]=3\\\\\\
(x+1)\times(x-1)=2^{3} \\\\\\
 x^{2} +x-x-1=8\\\\\\\
 x^{2} -1=8\\\\\\\
 x^{2} =8+1\\\\\
 x^{2} =9\\\\\
x= \sqrt{9} \\\\\\
x=\pm3\\\\\\\\\
\boxed{Obs: -3~~n\~ao~~serve:~~n\~ao~~existe~~log~~de~~um~~numero~~negativo }\\\\\\\
\boxed{Resposta:x=3}

Boa tarde!

Bons estudos!



Perguntas similares