Respostas
RESPOSTA LETRA (A)
– 2x – 2y – 6 = 0 → – x – y – 3 = 0 → –y = x + 3 → y = – 3 – x
x² + y² – 4x – 8y – 5 = 0
x² + (–3–x)² – 4x – 8y – 5 = 0
x² + x² + 6x + 9 – 4x + 8x + 24 – 5 = 0
2x² + 10x + 28 = 0
∆ = b² – 4ac
∆ = 10² – 4 * 2 * 28
∆ = 100 – 224
∆ = – 124
A₁: x² + y² - 4x - 8y - 5 = 0
A₂: x² + y² - 2x - 6y +1 = 0
Raio e centro de A₁:
x² + y² - 4x - 8y - 5 = 0
x² - 4x + y² - 8y - 5 = 0
(x² - 4x + 4) - 4 + (y² - 8y + 16) - 16 - 5 = 0
(x - 2)² + (y - 4)² - 4 - 16 - 5 = 0
(x - 2)² + (y - 4)² - 25 = 0
(x - 2)² + (y - 4)² = 25
(x - 2)² + (y- 4)² = 5²
O₁(2,4) e r₁ = 5
Raio e centro de A₂:
x² + y² - 2x - 6y + 1= 0
x² - 2x + y² - 6y + 1 = 0
x² - 2x + 1 -1 + y² - 6y + 9 - 9 + 1 = 0
(x² - 2x + 1) -1 + (y² - 6y + 9) - 9 + 1 = 0
(x - 1)² + (y - 3)² -1 - 9 + 1 = 0
(x - 1)² + (y - 3)² - 9 = 0
(x - 1)² + (y - 3)² = 9
(x - 1)² + (y - 3)² = 3²
O₂(1,3) e r₂ = 3
d = d(O₁,O₂) = √[(2-1)² + (4-3)²] = √[1² + 1²] ∴ d = √2
√2 < r₂ - r₁ = 5 - 3 = 2
RESPOSTA LETRA (B)
A1: r1 = raiz(4) = 2
A1: C1(2, 1)
A2: r2 = raiz(1) = 1
A2: C2(2, -2)
C1 a C2 = 1-(-2) = 3
2+1 = 3
A1, (y-1)^2 =4, y -1 = ± 2, y = 3 ou y = -1
A2, (y+2)^2 = 1, y + 2 = ± 1, y = -1 ou y = -3.
(2, -1)
(y-1)² – (y+2)² = 3
y² -2y +1 –y² + 4y +4 = 3
2y = -2
y = -1.
(x-2)+(-1-1)²=4
(x-2)²+4 = 4
x = 2
(2, -1)