Respostas
An= A1+(N-1)r
P.A (1,4,7) A razão dessa P.A é que vai de 3 em 3... ex: 1+3=4, 4+3=7 que dá a P.A que é (1,4,7)
Dados:
A1= 1
R=3
N=10
An é o que queres descobrir...
An=A1+(N-1)r
An=1+(10-9)3
An=1+9.3
An=1+ 27
An=28
Resultado final: An= 28
(1,4,7,10,13,13,19,22,25,28)
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da sequência (1, 4, 7,...), tem-se:
a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:1
c)décimo termo (a₁₀): ?
d)número de termos (n): 10 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 10ª), equivalente ao número de termos.)
e)Embora não se saiba o valor do décimo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos de crescem e, para que isto aconteça, necessariamente se deve somar um valor constante negativo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 4 - 1 ⇒
r = 3 (Razão positiva, conforme prenunciado no item e acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o décimo termo:
an = a₁ + (n - 1) . r ⇒
a₁₀ = a₁ + (n - 1) . (r) ⇒
a₁₀ = 1 + (10 - 1) . (3) ⇒
a₁₀ = 1 + (9) . (3) ⇒ (Veja a Observação 2.)
a₁₀ = 1 + 27 ⇒
a₁₀ = 28
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O décimo termo da P.A.(1, 4, 7, ...) é 28.
=======================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₁₀ = 28 fórmula do termo geral da P.A. e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o décimo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₁₀ = a₁ + (n - 1) . (r) ⇒
28 = a₁ + (10 - 1) . (3) ⇒
28 = a₁ + (9) . (3) ⇒
28 = a₁ + 27 ⇒ (Passa-se 27 ao 1º membro e altera-se o sinal.)
28 - 27 = a₁ ⇒
1 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 1 (Provado que a₁₀ = 28.)
→Veja outras tarefas relacionadas à determinação de termos em progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/27867386
https://brainly.com.br/tarefa/3960163
brainly.com.br/tarefa/11536192
brainly.com.br/tarefa/22357005
brainly.com.br/tarefa/27411775
brainly.com.br/tarefa/27380828
brainly.com.br/tarefa/10721299
brainly.com.br/tarefa/2403541
brainly.com.br/tarefa/27380724
brainly.com.br/tarefa/4097297