O valor da área da região limitada pelas retas y=0, x=-2, x=2 e pela curva 4-x²/4
Edilsonengamb:
a curva é 4-x²/4
Respostas
respondido por:
35
Oi Edilson
y = 0
x = 2
x = -2
y = 4 - x²/4
4 - x²/4 = 0
F(x) = ∫ (4 - x²/4) dx = 4x - x³/12
F(-2) = 4*-2 + 8/12 = -22/3
F(2) = 4*2 - 8/12 = 22/3
área
A = F(2) - F(-2) = 22/3 + 22/3 = 44/3 u.a
y = 0
x = 2
x = -2
y = 4 - x²/4
4 - x²/4 = 0
F(x) = ∫ (4 - x²/4) dx = 4x - x³/12
F(-2) = 4*-2 + 8/12 = -22/3
F(2) = 4*2 - 8/12 = 22/3
área
A = F(2) - F(-2) = 22/3 + 22/3 = 44/3 u.a
b. 16 u.a.
c. 15,46 u.a.
d. 14,67 u.a.
e. 12 u.a.
respondido por:
2
Resposta:
14.67 u.a
Explicação passo-a-passo: corrigido pelo AVA
Perguntas similares
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás