• Matéria: Matemática
  • Autor: valdirenesantos3
  • Perguntado 9 anos atrás

utilizando o método da substituição para calcular a integral,

Anexos:

Respostas

respondido por: Anônimo
3
Boa noite!

Solução!

\displaystyle\int t \sqrt{ 7t^{2}+12 } dt


u=7t^{2} +12\\\\\\
du=14tdt\\\\\
 \dfrac{du}{14}=tdt

\displaystyle\int  \frac{ \sqrt{u} }{14} du\\\\\\\\\\
 \frac{1}{14}\displaystyle\int \sqrt{u}~ du


 \dfrac{1}{14}\bigg(u\bigg)^{ \dfrac{1}{2} }\\\\\\\\
 \dfrac{1}{14} \frac{\bigg(u\bigg)^{ \dfrac{1}{2} +1}}{ \dfrac{1}{2}+1 } \\\\\\\\\ 
\dfrac{1}{14} \frac{\bigg(u\bigg)^{ \dfrac{3}{2}}}{ \dfrac{3}{2} } \\\\\\\\\
 \dfrac{1}{14}.\dfrac{2}{3}\bigg(u\bigg)^{ \dfrac{3}{2}}\\\\\\\
\dfrac{1}{21}\bigg(u\bigg)^{ \dfrac{3}{2}}\\\\\\\
\dfrac{1}{21}\bigg(7t^{2}+12 \bigg)^{ \dfrac{3}{2}}+c\\\\\\\
\displaystyle\int t \sqrt{ 7t^{2}+12 } dt= \dfrac{1}{21}\bigg(7t^{2}+12 \bigg)^{ \dfrac{3}{2}}+c


\boxed{Resposta:\dfrac{1}{21}\bigg(7t^{2}+12 \bigg)^{ \dfrac{3}{2}}+c~~~~\boxed{Alternativa~~A}}

Boa noite!
Bons estudos!


Anônimo: Qualquer dúvida comente aqui!
Anônimo: Valeu Valdirene!
respondido por: CyberKirito
0

Caso tenha problemas para visualizar a resposta experimente abrir pelo navegador https://brainly.com.br/tarefa/6714930

                                                                                           

\displaystyle\sf\int t\sqrt{7t^2+12}~dt=\dfrac{1}{14}\int 14t\sqrt{7t^2+12}~dt\\\sf\underline{ fac_{\!\!,}a}\\\sf u=7t^2+12\implies du=14t~dt\\\displaystyle\dfrac{1}{14}\int 14t\sqrt{7t^2+12}~dt=\dfrac{1}{14}\int\sqrt{u}~du\\\displaystyle\sf\dfrac{1}{14}\int u^{\frac{1}{2}}~du=\dfrac{1}{\diagdown\!\!\!\!\!\!14_7}\cdot\dfrac{\diagdown\!\!\!2}{3}u^{\frac{3}{2}}+k=\dfrac{1}{21}u^{\frac{3}{2}}+k\\\boxed{\boxed{\boxed{\boxed{\displaystyle\sf\int t\sqrt{7t^2+12}~dt=\dfrac{1}{21}(7t^2+12)^{\frac{3}{2}}+k}}}}

Perguntas similares