Transforme em produto as expressões a seguir
A) Cos 6x+ cos 4x
B) Sen 80graus - sen 20graus.
C) Sen 2x +cos (pi/2-X)
Respostas
respondido por:
11
Vamos lá.
Pede-se para transformar em produto as seguintes expressões:
A) cos(6x) + cos(4x).
Veja que: cos(a) + cos(b) = 2cos[(a+b)/2]*cos[(a-b)/2] ---- Assim, teremos:
cos(6x)+cos(4x) = 2cos[(6x+4x)/2]*cos[(4x-6x)/2]
cos(6x+cos(4x) = 2cos[(10x/2]*cos[-2x)/2]
cos(6x)+cos(4x) = 2cos(5x)*cos(-x) ----- note que cos(-x) = cos(x). Então:
cos(6x)+cos(4x) = 2cos(5x)*cos(x) <--- Esta é a resposta para o item "A".
B) sen(80º) - sen(20º)
Veja que sen(a) - sen(b) = 2sen[(a-b)/2]*cos[(a+b)/2] ---- Assim, teremos:
sen(80º) - sen(20º) = 2sen[(80º-20º)/2]*cos[(80º+20º)/2]
sen(80º) - sen(20º) = 2sen[(60º)/2]*cos[(100º)/2]
sen(80º) - sen(20º) = 2sen(30º)*cos(50º) <--- Esta é a resposta para o item B.
C) sen(2x)+cos(π/2-x) ---- note que cos(π/2-x) = -sen(x).
Assim, a expressão ficará: sen(2x) - sen(x). Aplicando a fórmula de sen(a) - sen(b), teremos:
sen(2x) - sen(x) = 2sen[(2x-x)/2]*cos[(2x+x)/2]
sen(2x) - sen(x) = 2sen[(x)/2]*cos[(3x)/2] -----
sen(2x - sen(x) = 2sen(x/2)*cos(3x/2) <--- Esta é a resposta para o item "C".
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
Pede-se para transformar em produto as seguintes expressões:
A) cos(6x) + cos(4x).
Veja que: cos(a) + cos(b) = 2cos[(a+b)/2]*cos[(a-b)/2] ---- Assim, teremos:
cos(6x)+cos(4x) = 2cos[(6x+4x)/2]*cos[(4x-6x)/2]
cos(6x+cos(4x) = 2cos[(10x/2]*cos[-2x)/2]
cos(6x)+cos(4x) = 2cos(5x)*cos(-x) ----- note que cos(-x) = cos(x). Então:
cos(6x)+cos(4x) = 2cos(5x)*cos(x) <--- Esta é a resposta para o item "A".
B) sen(80º) - sen(20º)
Veja que sen(a) - sen(b) = 2sen[(a-b)/2]*cos[(a+b)/2] ---- Assim, teremos:
sen(80º) - sen(20º) = 2sen[(80º-20º)/2]*cos[(80º+20º)/2]
sen(80º) - sen(20º) = 2sen[(60º)/2]*cos[(100º)/2]
sen(80º) - sen(20º) = 2sen(30º)*cos(50º) <--- Esta é a resposta para o item B.
C) sen(2x)+cos(π/2-x) ---- note que cos(π/2-x) = -sen(x).
Assim, a expressão ficará: sen(2x) - sen(x). Aplicando a fórmula de sen(a) - sen(b), teremos:
sen(2x) - sen(x) = 2sen[(2x-x)/2]*cos[(2x+x)/2]
sen(2x) - sen(x) = 2sen[(x)/2]*cos[(3x)/2] -----
sen(2x - sen(x) = 2sen(x/2)*cos(3x/2) <--- Esta é a resposta para o item "C".
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
adjemir:
Disponha, Pamartin, e bastante sucesso. Um abraço.
Perguntas similares
7 anos atrás
7 anos atrás
7 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás