• Matéria: Matemática
  • Autor: netonerd1
  • Perguntado 9 anos atrás

resolva em R, as seguinte equação biquadrada x a quarta- 10x ao quadrado + 9 = 0

Respostas

respondido por: Teffah
11
x^4-10x²+9=0
(x²)²-10x²+9=0
y²-10y+9=0                        x²=y

/\=b²-4ac
/\=(-10)²-4.1.9
/\=100-36
/\=64

y=-b+- raiz64
    ---------------
         2.a
y=-(-10)+-8
    --------------
           2
y=10+-8
   -----------
        2
y'=10+8       18
    --------- = ----- = 9
        2           2

y"=10-8       2
     -------- = ---- = 1
          2        2

Verificação:

y=9      

x^4-10x²+9=0
(x²)²-10x²+9=0                x²=y
  9²-10.9+9=0
81-90+9=0
90-90= 0  (V)

y=1           x²=y

(x²)²-10x²+9=0
1²-10.1+9=0
1-10+9=0
10-10=0     (V)




netonerd1: valeuuuuuuuu
Teffah: De nada!
netonerd1: <3
netonerd1: responde outraa
respondido por: solkarped
1

✅ Após resolver os cálculos, concluímos que o conjunto solução da referida equação biquadrada é:

  \Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S = \{-3,\,-1,\,1,\,3\}\:\:\:}}\end{gathered}$}

Seja a equação biquadrada:

        \Large\displaystyle\text{$\begin{gathered} x^{4} - 10x^{2} + 9 = 0\end{gathered}$}

Sabemos que esta equação foi gerada a partir da seguinte função biquadrada:

     \Large\displaystyle\text{$\begin{gathered} f(x) = x^{4} - 10x^{2} + 9\end{gathered}$}

Cujos coeficientes são:

                 \Large\begin{cases} a = 1\\b = -10\\c = 9\end{cases}

Para calcular as raízes da função biquadrada devemos fazer:

    \Large\displaystyle\text{$\begin{gathered} x = \pm\sqrt{\frac{-b\pm\sqrt{b^{2} - 4ac}}{2a}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{-(-10)\pm\sqrt{(-10)^{2} - 4\cdot1\cdot9}}{2\cdot1}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm\sqrt{100 - 36}}{2}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm\sqrt{64}}{2}}\end{gathered}$}

         \Large\displaystyle\text{$\begin{gathered} = \pm\sqrt{\frac{10\pm8}{2}}\end{gathered}$}

Encontrando as raízes, temos:

   \LARGE\begin{cases} x' = -\sqrt{\frac{10 + 8}{2}} = -\sqrt{\frac{18}{2}} = -\sqrt{9} = -3\\x'' = -\sqrt{\frac{10 - 8}{2}} = -\sqrt{\frac{2}{2}} = -\sqrt{1} = -1\\x''' = \sqrt{\frac{10 - 8}{2}} = \sqrt{\frac{2}{2}} = \sqrt{1} = 1\\x'''' = \sqrt{\frac{10 + 8}{2}} = \sqrt{\frac{18}{2}} = \sqrt{9} = 3\end{cases}

✅ Portanto, o conjunto solução desta função é:

     \Large\displaystyle\text{$\begin{gathered} S = \{-3,\,-1,\,1,\,3\}\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/13468761
  2. https://brainly.com.br/tarefa/48160763
  3. https://brainly.com.br/tarefa/47188717
  4. https://brainly.com.br/tarefa/52080516
  5. https://brainly.com.br/tarefa/52080530
  6. https://brainly.com.br/tarefa/52080880
  7. https://brainly.com.br/tarefa/52133431
  8. https://brainly.com.br/tarefa/52569560
  9. https://brainly.com.br/tarefa/17496264
  10. https://brainly.com.br/tarefa/25709140
  11. https://brainly.com.br/tarefa/7163873
  12. https://brainly.com.br/tarefa/7205971

\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}

Anexos:
Perguntas similares