• Matéria: Matemática
  • Autor: paulosiqueira52
  • Perguntado 9 anos atrás

Considerando a circunferência  C da equação (x-3)2 +(y-4) =5  avalie as seguintes afirmativas:

1.      
O ponto P (4,2) pertence a C


2.      
O raio C é 5


3.      
A reta 
y=4/3 x passa pelo centro  de C


 Assinale a alternativa correta :

A0SOMENTE A ALTERNATIVA 1 E
VERDADEIRA

B)SOMENTE A ALTERNATIVA 2 E
VERDADEIRA

As afirmativas 1,2 e3  são as verdadeiras

d)as afimativas 1 e 2 são
verdaeiras

e)as afirmativas 1 e 3  são verdadeiras




Respostas

respondido por: letmsm
109

A equação simplificada da circunferência é dada pela seguinte equação:

(x – a)² + (y – b)² = r²

Onde:

x, y = pontos da circunferência

a, b = coordenadas do centro da circunferência

r = raio da circunferência

 

Sendo assim, irei considerar a equação dada conforme abaixo, pois deve ter havido um erro de digitação:

(x – 3)² + (y – 4)² = 5

 

Analisando as afirmativas:

1. O ponto P (4,2) pertence a C

Substituindo as coordenadas do ponto dado na equação:

(x – 3)² + (y – 4)² = 5

(4 – 3)² + (2 – 4)² =

(1)² + (-2)² =

1 + 4 = 5

Como o resultado obtido é igual ao da equação da circunferência dada, pode-se considerar que esta afirmação está correta.

 

2. O raio C é 5

Comparando os termos da equação dada com a com a equação base:

(x – a)² + (y – b)² = r²

(x – 3)² + (y – 4)² = 5

 

Pode-se afirmar que r² = 5, então r = √5.

 Portanto, a afirmação está incorreta.

 

3. A reta y=4/3 x passa pelo centro  de C

Substituindo a coordenada x do centro de C - C(3, 4), na equação da reta:

x = 3

y = 4

 

y = (4/3)x

y = (4/3)*3

y = 4

 

Como o resultado obtido para y a partir da equação da reta é igual ao da coordenada do centro da circunferência, pode-se considerar que esta afirmação está correta.


RESPOSTA: E - As afirmativas 1 e 3 são verdadeiras.

Perguntas similares