• Matéria: Matemática
  • Autor: islaneroliveira188
  • Perguntado 8 anos atrás

em um triângulo isósceles a base mede 6 metros e o ângulo oposto a base mede 120 graus calcule a medida dos lados congruentes do triângulo

Respostas

respondido por: Ricardouea
139
A questão utilizamos a Lei dos Senos para  a resolução:

x/sen30º = 6/sen120º
x/1/2 = 6/√3/2

x= 6 . 2/√3 .  1/2

x = 6/√3 vamos racionalizar

x = 6√3 x √3/√3

x = 6√3/3

x = 2√3

respondido por: jalves26
0

A medida dos lados congruentes do triângulo é 2√3 m.

Lei dos Cossenos

Como o triângulo é isósceles, apresenta dois lados de mesma medida, no caso, os lados adjacentes ao ângulo central de 120°. Representamos por x a medida desses lados congruentes.

Como conhecemos uma das medidas dos lados do triângulo e do ângulo oposto a ele, podemos utilizar a Lei dos Cossenos:

"Em todo triângulo, o quadrado de um lado é igual a soma dos quadrados dos outros dois menos o dobro do produto das medidas desses lados pelo cosseno do ângulo por ele formado".

Logo:

6² = x² + x² - 2.x.x.cos 120°

36 = 2x² - 2x².(- 1/2)

36 = 2x² + x²

36 = 3x²

x² = 36/3

x² = 12

x = √12

x = 2√3

Mais sobre Lei dos Cossenos em:

https://brainly.com.br/tarefa/20622215

#SPJ3

Anexos:
Perguntas similares