• Matéria: Contabilidade
  • Autor: liliansilva88
  • Perguntado 8 anos atrás

Na unidade 3, aprendemos a calcular a probabilidade de sobrevivência e a probabilidade de falecimento entre as idades x e x+1. Posteriormente, na unidade 4, aprendemos a calcular a probabilidade de sobrevivência e a probabilidade de falecimento entre as idades x e x+n.
Prove que p x + q x = 1, ou seja, a probabilidade de sobrevivência adicionada à probabilidade de morte na idade x é sempre igual a um:

Respostas

respondido por: cintiasmaria
4

Posto que uma pessoa tem que viver ou morrer durante um ano dado, e não é possível que faça ambas as coisas, a soma destas duas probabilidades que se excluem mutuamente deve ser igual a 1.

A probabilidade de viver um ano, à idade de 11 anos, é igual a 0,992484, enquanto que a probabilidade de morrer durante o ano é igual a 0,007516. É fácil ver que a soma destes dois números é 1. Posto que 0,992484 = p 10 e 0,007516 = q 10, podemos dizer que p 10 + q 10 = 1. É fácil ver na tábua que a soma de um dado qualquer da coluna px e do correspondente dado da coluna qx é igual a 1. Logo, podemos expressar esta relação constante em termos gerais como segue:

px + qx = 1

Desta equação se derivam por transposição as seguintes:

px = 1 - qx

qx = 1 - px

Vamos efetuar uma demonstração teórica.


Se px = (1x + 1)/1x e qx = (1x -1x+ 1)/1x

Temos então: px + qx = ((1x + 1)/1x) +((1x -1x+ 1)/1x)

Logo: px + qx = 1x + 1+ 1x -1x+ 1/1X

Logo: px + qx = 1x/1x

e portanto px + qx = 1





liliansilva88: Obrigada vou postar lá e volto pra contar se aceitaram.
camilamont2017: Estou esperando se aceitaram ou não, porque quero fazer a mesma coisa.
liliansilva88: Aceitam, pode confiar gente. Tirei nota máxima! Obrigada Cintia =)
Perguntas similares