• Matéria: Matemática
  • Autor: lovato
  • Perguntado 10 anos atrás

1) USANDO A FORMULA DE BHASKARA RESOLVA

A) x2+10x+16=0

 

2) resolva as equações 

a)x(x-1)=2

      3

 

b) x + x = x(x+1)

    4    2

 

c) x+x=6x²+1

    3  2     6

 

d) 0,1x² -1,5x + 5,6=0

 

 

 

Respostas

respondido por: Anônimo
4
a)x^{2}+10x+16 =0
\\\\
\Delta = b^{2} - 4 \cdot a \cdot c
\\\\
\Delta=(10)^{2} - 4 \cdot (1) \cdot (16)
\\\\
\Delta =100-64
\\\\\
\Delta = 36
\\\\\\
x = \frac{-b \pm \sqrt{\Delta}}{2a}
\\\\
x = \frac{-10 \pm \sqrt{36}}{2 \cdot 1}
\\\\
x = \frac{-10 \pm 6}{2}
\\\\\\
\Rightarrow x'=\frac{-10 + 6}{2} = \frac{-4}{2} = \boxed{-2}
\\\\
\Rightarrow x''=\frac{-10 - 6}{2} = \frac{-16}{2}= \boxed{-8}
\\\\\\
\boxed{\boxed{S=\{-2,-8 \}}}



2-a) \frac{x(x-1)}{3}= 2
\\\\
\frac{x^{2}-x}{3}=2
\\\\
\text{MMC=3}
\\\\
\frac{x^{2}-x}{3}=\frac{2^{\times 3}}{1^{\times 3}}
\\\\
\frac{x^{2}-x}{\not{3}}=\frac{6}{\not{3}}
\\\\
x^{2}-x=6
\\\\
x^{2}-x-6= 0

\Delta = b^{2} - 4 \cdot a \cdot c
\\\\
\Delta = (-1)^{2} - 4 \cdot (1) \cdot (-6)
\\\\
\Delta =1+24
\\\\
\Delta =25
\\\\\\
x =\frac{-b \pm \sqrt{\Delta}}{2a}
\\\\
x =\frac{-(-1) \pm \sqrt{25}}{2 \cdot 1}
\\\\
x =\frac{1 \pm 5}{2}
\\\\\\
\Rightarrow x' =\frac{1 + 5}{2} = \frac{6}{2} = \boxed{3}
\\\\
\Rightarrow x'' = \frac{1 - 5}{2}= \frac{-4}{2}= \boxed{-2}
\\\\\\
\boxed{\boxed{S =\{-2,3\}}}



b) \frac{x}{4} + \frac{x}{2} = x(x+1)
\\\\
\frac{x}{4} + \frac{x}{2} = x^{2}+x
\\\\
\text{MMC = 4}
\\\\\
\frac{x}{4} + \frac{x^{\times 2}}{2^{\times2}} = \frac{(x^{2}+x)^{\times 4}}{1^{\times 4}}
\\\\
\frac{x}{\not{4}} + \frac{2x}{\not{4}} = \frac{4x^{4}+4x}{\not{4}}
\\\\
x+2x = 4x^{2}+4x
\\\\
4x^{2}+4x-2x-x = 0
\\\\
4x^{2}+x = 0

\Delta = b^{2} - 4 \cdot a \cdot c
\\\\
\Delta = (1)^{2} - 4 \cdot (4) \cdot (0)
\\\\
\Delta = 1-0
\\\\
\Delta = 1
\\\\\\
x =\frac{-b \pm \sqrt{\Delta}}{2a}
\\\\
x =\frac{-1 \pm \sqrt{1}}{2 \cdot 4}
\\\\
x =\frac{-1 \pm 1}{8}
\\\\\\
\Rightarrow x' = \frac{-1 + 1}{8} = \frac{0}{8} = \boxed{0}
\\\\\\
\Rightarrow x'' =\frac{-1 - 1}{8} = \frac{-2}{8} = \boxed{\frac{-1}{4}}
\\\\\\
\boxed{\boxed{S = \{0, -\frac{1}{4}\}}}



c) \frac{x}{3} + \frac{x}{2} = \frac{6x^{2}+1}{6}
\\\\
\text{MMC = 6}
\\\\
\frac{x^{\times 2}}{3^{\times 2}} + \frac{x^{\times 3}}{2^{\times 3}} = \frac{6x^{2}+1}{6}
\\\\
\frac{2x}{\not{6}} + \frac{3x}{\not{6}} = \frac{6x^{2}+1}{\not{6}}
\\\\
2x+3x = 6x^{2} + 1
\\\\
6x^{2}-2x-3x+1 = 0
\\\\
6x^{2} - 5x+1 = 0

\Delta = b^{2} - 4 \cdot a \cdot c
\\\\
\Delta = (-5)^{2} - 4 \cdot (6) \cdot (1)
\\\\
\Delta = 25-24
\\\\
\Delta = 1
\\\\\\
x = \frac{-b \pm \sqrt{\Delta}}{2a}
\\\\
x = \frac{-(-5) \pm \sqrt{1}}{2 \cdot 6}
\\\\
x = \frac{5 \pm 1}{12}
\\\\\\
\Rightarrow x' = \frac{5 + 1}{12} = \frac{6}{12} = \boxed{\frac{1}{2}}
\\\\
\Rightarrow x'' = \frac{5 - 1}{12} = \frac{4}{12} = \boxed{\frac{1}{3}}
\\\\\\
\boxed{\boxed{S = \{\frac{1}{3}, \frac{1}{2}\}}}



d) Antes da fazermos, vamos transformar tudo em fração para facilitar os cálculos:

0,1 = \frac{1}{10}
\\\\
1,5 = \frac{15}{10}
\\\\
5,6 = \frac{56}{10}


\frac{1x^{2}}{10}-\frac{15x}{10} + \frac{56}{10} = 0
\\\\
\frac{1x^{2}}{\not{10}}-\frac{15x}{\not{10}} + \frac{56}{\not{10}} = 0
\\\\
x^{2}-15x+56 = 0
\\\\
\Delta = b^{2} - 4 \cdot a \cdot c
\\\\
\Delta = (-15)^{2}- 4 \cdot (1) \cdot (56)
\\\\
\Delta = 225-224
\\\\
\Delta = 1
\\\\\\
x = \frac{-b \pm \sqrt{\Delta}}{2a}
\\\\
x = \frac{-(-15) \pm \sqrt{1}}{2 \cdot 1}
\\\\\
x = \frac{15 \pm 1}{2}


\Rightarrow x' = \frac{15 + 1}{2} = \frac{16}{2} = \boxed{8}
\\\\
\Rightarrow x'' = \frac{15 - 1}{2} = \frac{14}{2}  = \boxed{7}
\\\\\\
\boxed{\boxed{S = \{7,8\}}}

lovato: por favor vc pode fazer mas sem usar o delta? pois aqui o meu professor não usa o calculo com o delta :(
respondido por: AlineB
3
x = -b ± √ b² - 4ac
      --- ----------
           2a

a) x²+10x+16=0

x =    -10  ± √100 - 4 . 16        
                  2
x =    -10 
 ± √36             
                  2

x' = -10 + 6 /2 = -2
x" = -10 - 6/2 = -8

2)
a)x(x-1)=2     
        3
x (x - 1) = 2 .3
x² - x = 6
x² - x - 6 = 0

x =    1  ± √1 - 4 . (-6)           
              2
x =    1  ± √25             
                2
x'= 1 + 5/2  =  3
x"= 1 - 5/2  =   -2
 
b) x + x = x(x+1)   
    4    2 
 x+ 2x = x² + x
     4
x + 2x = 4 (x² + x)
3x = 4x² + 4x
4x² + 7x = 0

x =    -7  ±√ 49 - 4.4.0          
             8
x =    -7  ±√ 49          
             8
x' = 0 
x" = -14/8 = -7/4

c) x+x=6x²+1        (tira o mmc e corta o denominador porque é uma equação
    3  2     6                                      permite fazer isso)

2x + 3x = 6x² + 1

6x² - 5x + 1 = 0
x =   5 ± √ 25  - 4. 6            
               12 
x =   5 ± √ 1           
               12 
x' = 1/2
x" = 1/3 


d) 0,1x² -1,5x + 5,6=0
x = 1,5 ± √2,25 - 4. 0,1 . 5,6
           0,2
x = 1,5 ± √0,01
           0,2
x' = 1,5 + 0,1/2
x' = 8

x" = 1,5 - 0,1 /2
x" = 0,7

Espero ter te ajudado, desculpe pela demora (:

lovato: por favor tem como não colocar o DELTA ? pq aqui o professor só usa a formula assim: http://www.infoescola.com/wp-content/uploads/2009/11/formula-bhaskara1.jpg :(
AlineB: pronto arrumei
AlineB: (((:
lovato: ALINEEEEEEEE MUITO OBRIGADOOOOOOOOOOOO <3
AlineB: de nadaa querido ahhahaha
Perguntas similares