• Matéria: Matemática
  • Autor: marcela1387
  • Perguntado 7 anos atrás

sendo tgx=4, calcule o valor de sec x​

Respostas

respondido por: hamurabi200017
2

Segundo a relação fundamental da trigonometria:

sen²x + cos²x = 1

Dividindo tudo por cos²x:

\frac{sen^{2}x}{cos^{2}x} + \frac{cos^{2}x}{cos^{2}x} = \frac{1}{cos^{2}x} \\tg^{2}x + 1 = sec^{2}x

Substituindo:

sec²x = 1 + 4²

sec²x = 1 + 16

sec²x = 17

secx = ±√17

Espero ter ajudado :)

respondido por: corsacarro
0

Resposta:

Explicação passo-a-passo:

sec²x = 1+ tg²x

sec²x= 1+ 16

sec²x= 17

sec x =  V17

ok ? espero ter ajudado.

Perguntas similares