• Matéria: Matemática
  • Autor: anderson120
  • Perguntado 9 anos atrás

vigesimo termo da pa 13,15,17,19

Respostas

respondido por: VictorVonDoom1
9
Sabe-se que:

a1 = 13
r = 15 - 13 = 2
a20 = x 
n = 20

Então, aplicando a fórmula do termo geral:

an = a1 + r (n - 1)

a20 = 13 + 2 (20 - 1)

= 13 + 2 . 19
= 13 + 38

a20 = 51

Espero que tenha sido claro. 
respondido por: viniciusszillo
0

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da P.A. (3, 7,...), tem-se:

a)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:13

b)vigésimo termo (a₂₀): ?

c)número de termos (n): 20 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 20ª), equivalente ao número de termos.)

d)Embora não se saiba o valor do vigésimo termo, apenas pela observação dos três primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos sempre crescem, afastam-se do zero, particularmente à sua direita, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒  

r = 15 - 13 ⇒

r = 2 (Razão positiva, conforme prenunciado no item d acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o vigésimo termo:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

a₂₀ = 13 + (20 - 1) . (2) ⇒

a₂₀ = 13 + (19) . (2) ⇒         (Veja a Observação 2.)

a₂₀ = 13 + 38  ⇒

a₂₀ = 51

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais diferentes, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O 20º termo da P.A.(13, 15, 17,...) é 51.

=======================================================  

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₂₀ = 51 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o vigésimo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₂₀ = a₁ + (n - 1) . (r) ⇒

51 = a₁ + (20 - 1) . (2) ⇒

51 = a₁ + (19) . (2) ⇒

51 = a₁ + 38 ⇒    (Passa-se 38 ao 1º membro e altera-se o sinal.)

51 - 38 = a₁ ⇒  

13 = a₁ ⇔            (O símbolo ⇔ significa "equivale a".)

a₁ = 13                 (Provado que a₂₀ = 51.)

→Veja outras tarefas relacionadas a cálculo de termos em progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/25855791

https://brainly.com.br/tarefa/25888655

https://brainly.com.br/tarefa/2863337

https://brainly.com.br/tarefa/4081079

brainly.com.br/tarefa/3596616

brainly.com.br/tarefa/25713044

brainly.com.br/tarefa/4130142

brainly.com.br/tarefa/10210269

brainly.com.br/tarefa/14650577

brainly.com.br/tarefa/8907084

brainly.com.br/tarefa/25790757

brainly.com.br/tarefa/1123082

brainly.com.br/tarefa/25743374

Perguntas similares