• Matéria: Matemática
  • Autor: jv1524p7k2b2
  • Perguntado 5 anos atrás

lim(x→1)⁡(1/(x-1)+(x-5)/(x²+2x-3))=1/2

Respostas

respondido por: Zecol
1

Vamos calcular as raízes de x^2+2x-3 para fatorá-lo:

x=\frac{-2\pm\sqrt{2^2-4\cdot(-3)}}{2}

x=\frac{-2\pm\sqrt{16}}{2}

x=\frac{-2\pm4}{2}

x=-1\pm2

Sendo -3 e 1 as raízes, temos que x^2+2x-3=(x-1)(x+3), logo:

\frac{1}{x-1}+\frac{x-5}{x^2+2x-3}=\frac{1}{x-1}+\frac{x-5}{(x-1)(x+3)}

\frac{1}{x-1}+\frac{x-5}{x^2+2x-3}=\frac{1}{x-1}\cdot\left(1+\frac{x-5}{x+3}\right)

\frac{1}{x-1}+\frac{x-5}{x^2+2x-3}=\frac{1}{x-1}\cdot\frac{x+3+x-5}{x+3}

\frac{1}{x-1}+\frac{x-5}{x^2+2x-3}=\frac{1}{x-1}\cdot\frac{2x-2}{x+3}

\frac{1}{x-1}+\frac{x-5}{x^2+2x-3}=\frac{1}{x-1}\cdot\frac{2(x-1)}{x+3}

\frac{1}{x-1}+\frac{x-5}{x^2+2x-3}=\frac{2}{x+3}

Concluindo assim que:

\lim_{x\to1}\left(\frac{1}{x-1}+\frac{x-5}{x^2+2x-3}\right)=\lim_{x\to1}\left(\frac{2}{x+3}\right)

\lim_{x\to1}\left(\frac{1}{x-1}+\frac{x-5}{x^2+2x-3}\right)=\frac{2}{1+3}=\frac{1}{2}

Perguntas similares