Respostas
Uma demonstração de que são apenas cinco os sólidos platónicos pode ser obtida através do processo da sua construção, como Platão fez num seu texto incluído no diálogo Timeu.
Para a construção dos sólidos platónicos, por definição, apenas podemos utilizar polígonos regulares congruentes. Comecemos por considerar o triângulo equilátero, que é o polígono regular com menos lados. Quantos poliedros, cujas faces são apenas este polígono, conseguimos construir? Para responder a esta pergunta, centremos a nossa atenção nos vértices dos possíveis poliedros (basta considerar apenas um, pois os restantes são idênticos).
Com dois triângulos equiláteros, não se consegue constituir um vértice de um poliedro, pois um ângulo sólido tem que ser constituído pelo menos por três planos. Com três triângulos equiláteros é possível constituir um vértice de um poliedro, que é concretamente o tetraedro. Esta possibilidade prende-se com facto de a soma das amplitudes dos ângulos internos dos diversos triângulos adjantes, no vértice, ser inferior a 360º, exactamente 180º.
Se considerarmos quatro triângulos equiláteros, cuja soma das amplitudes dos ângulos internos adjantes no vértice é de 240º, obtemos o octaedro. Considerando cinco desses triângulos num vértice, essa soma é de 300º, ainda inferior a 360º, e obtemos o icosaedro. Passando para seis triângulos equiláteros, chegamos a uma impossibilidade. A soma das amplitudes dos ângulos internos adjantes no vértice é, neste caso, 360º, o que não permite "fechar" o vértice, isto é, formar um ângulo sólido, pois os triângulos ficam todos sobre o mesmo plano (formando uma pavimentação do plano em torno do suposto vértice). A consideração de um número maior de triângulos equiláteros em torno de um vértice, obviamente já não possibilita a construção de um poliedro.