• Matéria: Matemática
  • Autor: jaypeejad1794
  • Perguntado 3 anos atrás

Uma esfera de raio 9 cm é seccionada por um plano que dista 6 cm do seu centro. Qual é a área, em cm², da secção formada?

Respostas

respondido por: andre19santos
0

A área da secção formada é de 45π cm².

Triângulos retângulos

Utilizando o teorema de Pitágoras, podemos calcular a medida de um dos lados desses triângulos caso saibamos os outros dois. Sendo a o valor da hipotenusa, tem-se:

a² = b² + c²

O plano que secciona a esfera forma o triângulo retângulo da figura abaixo (vista frontal), combinando o raio da esfera e a distância do seu centro. Aplicando o teorema de Pitágoras, encontramos a medida do cateto:

R² = r² + h²

9² = r² + 6²

r² = 81 - 36

r² = 45

Como a secção formada é uma circunferência, temos que sua área será:

A = πr²

A = 45π cm²

Leia mais sobre triângulos em:

https://brainly.com.br/tarefa/44237753

#SPJ4

Anexos:
Perguntas similares