• Matéria: Matemática
  • Autor: LucasJairo
  • Perguntado 9 anos atrás

Calcule a integral

k)  \int\ {}(3u^5-2u^3) \, du

Respostas

respondido por: albertrieben
0
Oi Lucas

√ (3u⁵ - 2u³) du = √ 3u⁵ du - √ 2u³ du 

√ 3u⁵ du - √ 2u³ du = 3*u^(⁵+¹)/(5 + 1) - 2*u^(³+¹)/(3 + 1) 

√ 3u⁵ du - √ 2u³ du = u⁶/2 - u⁴/2 + C 

.
respondido por: Anônimo
0

\sf \int \left(3u^5-2u^3\right)du\\\\\\=\int \:3u^5du-\int \:2u^3du\\\\\\=\dfrac{u^6}{2}-\dfrac{u^4}{2}\\\\\\\to \boxed{\sf =\frac{u^6}{2}-\frac{u^4}{2}+C}

Perguntas similares