• Matéria: Matemática
  • Autor: LucasJairo
  • Perguntado 9 anos atrás

5) Calcule a integral

 \int\ \frac{1}{x^2 \sqrt{x^2+4} }  \, dx


Lukyo: ∫ 1/(x^2 √(x^2 + 4)) dx

∫ 1/(x^2 sqrt(x^2 + 4)) dx
Lukyo: Integral indefinida

∫ 1/(x^2 √(x^2 + 4)) dx

∫ 1/(x^2 sqrt(x^2 + 4)) dx

Respostas

respondido por: Lukyo
1
I=\displaystyle\int\!\frac{1}{x^2\sqrt{x^2+4}}\,dx~~~~~~\mathbf{(i)}


Faça a seguinte substituição trigonométrica:

x=2\,\mathrm{tg\,}t~~\Rightarrow~~\left\{ \begin{array}{l} dx=2\sec^2 t\,dt\\\\ t=\mathrm{arctg}\left(\dfrac{x}{2} \right ) \end{array} \right.\\\\\\ x^2+4=(2\,\mathrm{tg\,}t)^2+4\\\\ x^2+4=4\,\mathrm{tg^2\,}t+4\\\\ x^2+4=4\cdot (\mathrm{tg^2\,}t+1)\\\\ x^2+4=4\sec^2 t\\\\ \sqrt{x^2+4}=\sqrt{4\sec^2 t}\\\\ \sqrt{x^2+4}=2\sec t~~~~(\text{pois }-\pi/2<t<0~~\text{ ou }~~0<t<\pi/2)


Substituindo em \mathbf{(i)}, a integral fica

=\displaystyle\int\!\frac{1}{(2\,\mathrm{tg\,}t)^2\cdot 2\sec t}\cdot 2\sec^2 t\,dt\\\\\\ =\int\!\frac{\diagup\!\!\!\! 2\sec t\cdot \sec t}{4\,\mathrm{tg^2\,}t\cdot \diagup\!\!\!\! 2\sec t}\,dt\\\\\\ =\frac{1}{4}\int\!\frac{\sec t}{\mathrm{tg^2\,}t}\,dt\\\\\\ =\frac{1}{4}\int\!\sec t\cdot \frac{1}{\mathrm{tg^2\,}t}\,dt\\\\\\ =\frac{1}{4}\int\!\frac{1}{\cos t}\cdot \frac{\cos^2 t}{\mathrm{sen^2\,}t}\,dt\\\\\\ =\frac{1}{4}\int\!\frac{\cos t}{\mathrm{sen^2\,}t}\,dt

=\displaystyle\frac{1}{4}\int\!\frac{1}{\mathrm{sen^2\,}t}\cdot \cos t\,dt\\\\\\ =\frac{1}{4}\int\!\frac{1}{u^2}\,du~~~~~~(u=\mathrm{sen\,}t)\\\\\\ =\frac{1}{4}\int\!u^{-2}\,du\\\\\\ =\frac{1}{4}\cdot \frac{u^{-2+1}}{-2+1}+C\\\\\\ =\frac{1}{4}\cdot \frac{u^{-1}}{-1}+C\\\\\\ =-\,\frac{1}{4}\cdot \frac{1}{u}+C\\\\\\ =-\,\frac{1}{4}\cdot \frac{1}{\mathrm{sen\,}t}+C\\\\\\ =-\,\frac{1}{4}\,\mathrm{cossec\,}t+C~~~~~~\mathbf{(ii)}


Para voltar à variável original x, tomamos como auxílio o triângulo retângulo em anexo. Daí, tiramos que

\mathrm{cossec\,}t=\dfrac{\sqrt{x^2+4}}{x}


e voltando a \mathbf{(iii)}, finalmente chegamos a

=-\,\dfrac{1}{4}\cdot \dfrac{\sqrt{x^2+4}}{x}+C\\\\\\\\ \therefore~~\boxed{\begin{array}{c} \displaystyle\int\!\frac{1}{x^2\sqrt{x^2+4}}\,dx=-\,\dfrac{\sqrt{x^2+4}}{4x}+C \end{array}}


Bons estudos! :-)


Lukyo: Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/6273880
respondido por: Anônimo
0

\sf \displaystyle  \int \frac{1}{x^2\sqrt{x^2+4}}dx\\\\\\=\int \frac{\sec \left(u\right)}{4\tan ^2\left(u\right)}du\\\\\\=\frac{1}{4}\cdot \int \frac{\sec \left(u\right)}{\tan ^2\left(u\right)}du\\\\\\=\frac{1}{4}\cdot \int \frac{\cos \left(u\right)}{\sin ^2\left(u\right)}du\\\\\\=\frac{1}{4}\cdot \int \frac{1}{v^2}dv\\\\\\=\frac{1}{4}\cdot \int \:v^{-2}dv\\\\\\\frac{1}{4}\cdot \frac{v^{-2+1}}{-2+1}\\\\\\

\sf \displaystyle\sf \displaystyle =\frac{1}{4}\cdot \frac{\sin ^{-2+1}\left(\arctan \left(\frac{1}{2}x\right)\right)}{-2+1}\\\\\\=-\frac{\sqrt{4+x^2}}{4x}\\\\\\\to \boxed{\sf -\frac{\sqrt{4+x^2}}{4x}+C}

Perguntas similares