• Matéria: Matemática
  • Autor: matheuscarbonari
  • Perguntado 8 anos atrás

alguem consegue resolver? \int\limits^4_{-1} {x} \sqrt{x+5}  \, dx

Respostas

respondido por: ArthurPDC
2
Vamos fazer uma substituição. Seja u=x+5. Então:

u=x+5\Longrightarrow du=dx

Redefinindo os limites de integração:

Para x=-1: u=-1+5\Longrightarrow u=4
Para x=4: u=4+5\Longrightarrow u=9

Agora vamos desenvolver a integral dada:

\displaystyle
I=\int_{-1}^{4} x\sqrt{x+5}\,dx\\\\
I=\int_{4}^{9} (u-5)\sqrt{u}\,dx\\\\
I=\int_{4}^{9}(u\sqrt u-5\sqrt u)\,dx\\\\
I=\int_{4}^{9}(u^{\frac 3 2}-5 u^{\frac1 2})\,dx\\\\
I=\int_{4}^{9} u^{\frac 3 2}\,dx-5\int_{4}^{9} u^{\frac1 2}\,dx\\\\
I=\left[\dfrac{u^{\frac 3 2 +1}}{\frac 3 2 +1}\right]_{4}^{9}-5\left[\dfrac{u^{\frac 1 2 +1}}{\frac 1 2 +1}\right]_{4}^{9}

I=\left[\dfrac{u^{\frac 5 2}}{\frac 5 2}\right]_{4}^{9}-5\left[\dfrac{u^{\frac 3 2}}{\frac 3 2}\right]_{4}^{9}\\\\
I=\dfrac{2}{5}\left[u^{\frac 5 2}\right]_{4}^{9}-\dfrac{10}{3}\left[u^{\frac 3 2}\right]_{4}^{9}\\\\
I=\dfrac{2}{5}\left[9^{\frac 5 2}-4^{\frac 5 2}\right]-\dfrac{10}{3}\left[9^{\frac 3 2}-4^{\frac 3 2}\right]\\\\
I=\dfrac{2}{5}\left[3^5-2^5\right]-\dfrac{10}{3}\left[3^3-2^3\right]\\\\
I=\dfrac{2}{5}\left[243-32\right]-\dfrac{10}{3}\left[27-8\right]

I=\dfrac{2}{5}[211]-\dfrac{10}{3}[19]\\\\
I=\dfrac{422}{5}-\dfrac{190}{3}\\\\
\boxed{I=\dfrac{316}{15}}
Perguntas similares